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Abstract—The capability of switching into the islanded opera-
tion mode of microgrids has been advocated as a viable solution
to achieve high system reliability. This paper proposes a new
model for the microgrids optimal scheduling and load curtailment
problem. The proposed problem determines the optimal schedule
for local generators of microgrids to minimize the generation cost
of the associated distribution system in the normal operation.
Moreover, when microgrids have to switch into the islanded
operation mode due to reliability considerations, the optimal
generation solution still guarantees for the minimal amount of
load curtailment. Due to the large number of constraints in both
normal and islanded operations, the formulated problem becomes
a large-scale optimization problem and is very challenging to
solve using the centralized computational method. Therefore,
we propose a decomposition algorithm using the alternating
direction method of multipliers (ADMM) that provides a parallel
computational framework. The simulation results demonstrate
the efficiency of our proposed model in reducing generation cost
as well as guaranteeing the reliable operation of microgrids in the
islanded mode. We finally describe the detailed implementation
of parallel computation for our proposed algorithm to run
on a computer cluster using the Hadoop MapReduce software
framework.

Index Terms—ADMM, big data, Hadoop, integrated microgrid,
islanded operation, load curtailment, MapReduce.

I. INTRODUCTION

Microgrids have been proposed as one of the key compo-
nents for grid modernization, which operate as single con-
trollable entities to supply a group of interconnected loads
[1], [2]. With the capability of integrating renewable energy
resources and energy storage devices, microgrids are expected
to reduce large capital investment by meeting increased energy
demand using locally generated power [3]–[5]. In addition, by
deploying power generation close to end users, microgrids are
becoming promising solution to improve reliability and power
quality [6]–[9].

Despite microgrids has been advocated as a viable tech-
nology to ensure grid reliability, several research challenges
remain that need to be addressed [10]. Recent research has
studied problems of generation schedule for microgrids in
the most cost-effective way. In [11], the authors propose a
distributed algorithm to obtain the global optimal solution
of optimal power flow for microgrids, with the objective of
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minimizing either the power distribution losses or the cost of
power drawn from the substation. The work in [12] provides a
distributed approach to solve the economic dispatch problem
for microgrids. A distributed energy management strategy
for the optimal operation of microgrids is proposed in [13].
However, most of the mentioned works focus on the operation
of microgrids without considering reliability requirements in
the proposed models.

In addition to the aforementioned characteristics, one of
the salient features of microgrids is islanded operation, which
is defined as the capability to disconnect from the main
distribution network and locally supply their loads [14]. By
rapidly disconnecting from the main grid, microgrids can
protect their components from upstream disturbances or volt-
age fluctuations. More importantly, the islanded operation
mode allows microgrids to ensure energy supply for critical
loads by increasing the generation output of local generators
when the main distribution network is faulty. This capability
has been advocated as a viable solution to achieve high
system resiliency during major outages [15]. However, due
to the limitation of ramping ability of local generators in
increasing generation output from the operating point in the
normal operation before switching into the islanded operation,
microgrids may not be able to satisfy all load demand for
local customers. In order to overcome supply deficiency,
the work in [16] investigates the real-time pricing for a
power grid operator to incentivize aggregators to reschedule
energy consumption when experiencing contingency. Another
approach is to propose a power management algorithm for
islanded microgrids using energy storage and demand response
program [17]. However, since these works either focus on the
operation of microgrids in the islanded mode solely or tackle
the problem when contingencies have already been occurred,
the proposed models present limitations in maintaining proper
level of reliability that can be improved by incorporating
certain requirements of the islanded operation into the optimal
scheduling problem for microgrids.

The work presented in this paper is to fill the gap in
considering the operation for integrated microgrids in both
grid-connected and islanded modes. More specifically, the
optimal scheduling of local generators in the normal operation
needs to take into account the requirement for satisfying
critical loads when switching into the islanded operation. The
objective is to minimize the generation cost of the associated
distribution system in the normal operation while ensure the
minimal amount of load curtailment when microgrids switch
into the islanded operation. Due to the large number of con-
straints incorporated into the model, the formulated problem
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Fig. 1. The model of microgrids with islanding operation.

becomes a large-scale optimization problem, and may not be
scalable to solve by the centralized method. Therefore, we
apply the alternating direction method of multipliers (ADMM)
decomposition technique [18] to efficiently solve the problem.
By jointly tackling the above discussed challenges, our main
technical contributions can be summarized as follows:
• Minimal Load Curtailment Modeling in Islanded Op-

erations: We formulate a microgrid optimal scheduling
problem in the normal operation mode. Moreover, we also
incorporate `1-norm into the objective function to obtain
the minimal amount of load curtailment when microgrids
are disconnected from the main grid. The model demon-
strates that only a sparse number of microgrids have to
curtail load when switching into the islanded operation.

• Parallel Algorithm: The formulated problem consists of
a large number of constraints and becomes a large-scale
optimization problem. Therefore, we propose a parallel
algorithm using the ADMM decomposition technique to
efficiently solve the optimization problem.

• Big Data Framework Implementation: We provide a
detailed implementation of the parallel computing for
our proposed algorithm using the Hadoop MapReduce
software framework to run on a computer cluster to
reduce the computational complexity.

The remainder of this paper is organized as follows. The
optimal scheduling problem with the islanded operation con-
straints is formulated in Section II. Section III provides the
decomposition algorithm using ADMM. Simulation results are
presented in Section IV. Detailed implementation of parallel
computing for the proposed algorithm on a computer cluster
using the Hadoop MapReduce is described in Section V, and
Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we describe the model of the microgrid
system, and formulate the optimal scheduling problem of
integrated microgrids.

A. System Description

Consider a distribution network consisting a set N ,
{1, 2, . . . , N} of microgrids, which are connected to the main

power grid as in Fig. 1. Each microgrid i ∈ N is required
to serve a group of customers having demand Di. To fully
satisfy demand requested from users, each microgrid can
locally generate power using its generator and/or acquires
power from the main grid. Moreover, each microgrid has
direct connections with a group of other microgrids and can
exchange power locally.

Let Ni be the set of neighboring microgrids connected
to microgrid i through transmission lines (including the mi-
crogrid i itself), with cardinality |Ni| = Ni. Define xxxoi =
{xoij}j∈Ni

be the vector of power generation that microgrid i
generates to exchange with its neighbors, where xoii is the
amount of power that microgrid i generates to supply its
own customers. We use superscript o for all variables in the
normal operation to differentiate with variables in the islanded
operation, which will be defined later. Then the total amount
of power that microgrid i has to generate during the normal
operation using its local generation is 111Txxxoi =

∑
j∈Ni

xoij ,
where 111 = [1, 1, . . . , 1]T is a column vector of ones.

In order to satisfy demand for its users, microgrid i acquires
yoi amount of power from the main grid. Any power transfer
between a microgrid and the main grid is accompanied with
the loss of power over the distribution lines. The power loss
due to the power exchange between the main power grid and
microgrid i, P o

loss,i−o, can be calculated as [19]

P o
loss,i−o =

Roi(y
o
i )2

V 2
o

+ αyoi , (1)

where Roi is resistance of the transmission line connecting
microgrid i and the main grid, α is the power loss constant due
to transformer, and Vo is operating voltage between microgrid
i and the main grid. Similarly, the power loss due to power
exchange between two microgrids i and j, P o

loss,i−j , can be
calculated as

P o
loss,i−j =

Rij(x
o
ij)

2

V 2
1

, (2)

where Rij is the resistance of the transmission line connecting
microgrid i and j, and V1 is the operating voltage between
microgrids. The difference between (1) and (2) is that there is
no power loss due to transformer in (2) since all microgrids
operate at the same voltage level.

Then the total power that a microgrid obtains to supply its
customers includes: its local generation, power acquired from
the main grid and/or from its neighbors. We have the following
power balance constraint in the normal operation

xoii + (yoi − P o
loss,i−o) +

∑
j∈Ni,j 6=i

(xoji − P o
loss,j−i) = Di,∀i.

(3)

B. Islanded Operation

When microgrid k is disconnected from the main grid, the
power that it obtains to supply its customers can only be
generated locally from its generator and/or from the power
exchange with its neighbors. However, it may be possible
that the total amount of available power when a microgrid
is islanded cannot fully satisfy the demand for its customers.
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Therefore, the load demand that microgrid k is able to serve
will be reduced. Let εk denote the fraction amount of load
demand that microgrid k has to curtail if it is islanded from
the main grid (we use superscript k to denote all variables in
islanded operation case k, which is corresponding to situation
that microgrid k is islanded from the main grid). Since
microgrids serve different types of demand, they typically have
different requirements for load satisfaction when switching
into the islanded operation. Therefore, we have the following
constraint for load curtailment of microgrid k

0 ≤ εk ≤ εkmax, (4)

where εkmax is the predefined maximum allowable fraction of
load curtailment. The amount of load demand that microgrid
k has to satisfy in the islanded operation mode is (1− εk)Dk.
Then we have the following constraint for microgrid k

xkkk +
∑

j∈Nk,j 6=k

(xkjk − P k
loss,j−k) ≥ (1− εk)Dk. (5)

Note that, in (5), there is no variable ykk since microgrid
k is islanded and cannot obtain the power from the main
grid. Moreover, we assume that each microgrid is located
at a different geographical area, and therefore, when the
upstream disturbance or voltage fluctuation happens, only one
microgrid is disconnected from the main grid at any given time
instance. The more general case of more than one microgrid
are islanded from the main grid can be directly applied without
changing the structure of the paper by constructing and adding
constraint (5) into the problem for any microgrids switch into
the islanded operation. All remaining microgrids i 6= k that
are still connected to the main grid must fully satisfy their
users demand as the following power balance constraint

xkii + (yki − P k
loss,i−o) +

∑
j∈Ni,j 6=i

(xkji − P k
loss,j−i) = Di.

(6)

When microgrid k is islanded from the main grid, all
microgrids in the network have to adjust the power generation
output compared to the normal operation mode to help satisfy
power demand for users. However, the adjustment of power
generation output must be constrained by the ramping limit

|111Txxxki − 111Txxxoi | ≤ ∆max
i ,∀i ∈ N , (7)

where ∆max
i is the maximum ramping rate of local generator

at microgrid i. Similarly, the main grid also needs to resched-
ule its generation output when a microgrid is disconnected
from the main distribution network. Therefore, we have the
following ramping constraint

|111Tyyyki − 111Tyyyoi | ≤ ∆max
o , (8)

where yyyk = [yk1 , y
k
2 , . . . , y

k
N ] denotes the power flow vector

from the main grid to microgrids when microgrid k is islanded,
and ∆max

o is the maximum ramping rate of generators at the
main grid.

Note that, all constraints (5), (6), (7), and (8) must be
constructed for all possible islanded operation cases by con-
sidering each microgrid is disconnected from the main grid
one at a time.

C. Optimal Scheduling Problem of Integrated Microgrids

In this subsection, we formulate an optimization problem
to obtain the optimal scheduling for all microgrids in the
normal operation. In addition, we want the optimal solution
to guarantee the reliable operation of microgrids as well.
Specifically, when a microgrid is disconnected from the main
grid, the local generator at each microgrid is able to adjust its
generation output to a new operation point compared to that in
the normal operation so that to minimize the amount of load
curtailment.

Let Ci(x) be the convex cost function for generating x
amount units of power at microgrid i, or at the main grid if i =
0. We also define εDεDεD = [ε1D1, ε

2D2, . . . , ε
kDk, . . . , ε

NDN ]T

as the load curtailment vector of microgrids. Then the optimal
scheduling problem for microgrids and the main grid can be
formulated as follow

min Co(yyyo) +

N∑
i=1

Ci(xxxoi ) + τ‖εDεDεD‖1 (9)

s.t. xoii + (yoi − P o
loss,i−o)

+
∑

j∈Ni,j 6=i

(xoji − P o
loss,j−i) = Di,∀i, (10)

− FLmax
i−j ≤ xoij + xoji ≤ FLmax

i−j ,∀i, j, (11)

− FLmax
i ≤ yoi ≤ FLmax

i ,∀i, (12)

xkkk +
∑

j∈Nk,j 6=k

(xkjk − P k
loss,j−k) ≥ (1− εk)Dk,∀k,

(13)

xkii + (yki − P k
loss,i−o)

+
∑

j∈Ni,j 6=i

(xkji − P k
loss,j−i) = Di,∀i 6= k, ∀k, (14)

− FLmax
i−j ≤ xkij + xkji ≤ FLmax

i−j ,∀i, j, ∀k, (15)

− FLmax
i ≤ yki ≤ FLmax

i ,∀i,∀k, (16)

0 ≤ εk ≤ εkmax,∀k, (17)

|111Txxxki − 111Txxxoi | ≤ ∆max
i ,∀i,∀k, (18)

|111Tyyyk − 111Tyyyo| ≤ ∆max
o ,∀k, (19)

where τ is a positive weighted parameter to capture the trade-
off between generation cost minimization and minimal amount
of load curtailment. The third term in (9), ‖εDεDεD‖1, is `1-norm
of vector εDεDεD, which determines the amount of load curtailment
in the islanded operation mode

‖εDεDεD‖1
def
=
∑
k

|εkDk|.

Incorporating `1-norm, ‖εDεDεD‖1, into the objective function
(9) allows us to obtain the optimal solution that minimizes
the amount of load curtailment when microgrids switch into
islanded operation mode. The constraints (11), (12), (15), and
(16) are the line flow limit where FLmax is the flow limit.

The optimization problem in (9)-(19) is convex and can be
solved in a centralized fashion to obtain the global optimal
solution. However, since a large number of constraints are
coupled over the normal operation and the islanded operation,
the centralized computation scheme is not scalable.
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III. DECOMPOSITION ALGORITHM BASED ON ADMM

In this section, we first provide an overview of the ADMM
method to solve a convex optimization problem. Then a
parallel algorithm for the optimal scheduling of microgrids
is proposed.

A. An Introduction to ADMM

Consider an optimization problem with the general form as

min f(x) + g(z) (20)
s.t. Ax+Bz = c.

The augmented Lagrangian function of the problem in (20) is
written as [18]

L(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c)

+
ρ

2
‖Ax+Bz − c‖2, (21)

where λ is the Lagrangian multiplier, and ρ is a penalty
parameter. The iterative procedure of ADMM to solve the
problem in (20) can be expressed as follows

x[t+ 1] := arg min
x
L(x, z[t], λ[t]), (22)

z[t+ 1] := arg min
z
L(x[t+ 1], z, λ[t]), (23)

λ[t+ 1] := λ[t] + ρ (Ax[t+ 1] +Bz[t+ 1]− c) , (24)

where in each iteration, the augmented Lagrangian function is
minimized over x and z in an alternating fashion.

B. Parallel Algorithm for Microgrid Scheduling

The problem in (9)-(19) contains a large number of con-
straints and becomes a large-scale optimization problem. How-
ever, we realize that constraints are separable into the different
islanded operation cases for different microgrids. In order
to make the problem in (9)-(19) to be more compact and
ready for using ADMM, we define the feasible set of power
generation vectors in the normal operation case and in the
islanded operation cases as follow

Fo = {(xxxo, yyyo)|(10), (11), (12)},
Fk = {(xxxk, yyyk, εk)|(13), (14), (15), (16), (17)},∀k.

We further introduce auxiliary variables yyyo,k and xxxo,ki as the
local copies of yyyo and xxxoi in the normal operation at each
islanded operation case

yyyo,k = yyyo,∀k,
xxxo,ki = xxxoi ,∀i, k.

Then, the problem in (9)-(19) can be reformulated as follow

min Co(yyyo) +

N∑
i=1

Ci(xxxoi ) + τ

N∑
k=1

εkDk (25)

s.t. (xxxo, yyyo) ∈ Fo,

(xxxk, yyyk, εk) ∈ Fk,∀k = 1, . . . , N,

−∆max
o ≤ 111Tyyyk − 111Tyyyo,k ≤ ∆max

o ,∀k,
−∆max

i ≤ 111Txxxki − 111Txxxo,ki ≤ ∆max
i ,∀i, k,

yyyo,k = yyyo,∀k,
xxxo,ki = xxxoi ,∀i, k.

The augmented Lagrangian function of the problem in (25)
is given by [18]

L =Co(yyyo) +

N∑
i=1

Ci(xxxoi ) + τ

N∑
k=1

εkDk

+

N∑
k=1

(λλλk)T (yyyo,k − yyyo) +

N∑
k=1

N∑
i=1

(µµµk
i )T (xxxo,ki − xxxoi )

+
γ

2

N∑
k=1

‖yyyo,k − yyyo‖2 +
γ

2

N∑
k=1

N∑
i=1

‖xxxo,ki − xxxoi ‖2

=Co(yyyo) +

N∑
i=1

Ci(xxxoi )

+

N∑
k=1

[
τεkDk + (λλλk)T (yyyo,k − yyyo)

+

N∑
i=1

(µµµk
i )T (xxxo,ki − xxxoi )

+
γ

2
‖yyyo,k − yyyo‖2 +

γ

2

N∑
i=1

‖xxxo,ki − xxxoi ‖2
]
, (26)

where λλλ,µµµ are the Lagrangian multipliers, and γ is a penalty
parameter.

Define the primal variables zzz = (yyyo, {xxxoi }∀i), which is
the decision variable vector in normal operation, and www =
({wwwk, εk}∀k), where wwwk = (yyyk, {xxxki }∀i) is the decision vari-
able vector in islanded operation case k. Then the ADMM
decomposition technique can be used to solve the problem
in (25) in an iterative procedure. Specifically, at the tth

iteration, the primal variables and dual variables are updated
sequentially as

zzz[t+ 1] = arg minL(zzz,www[t],λλλ[t],µµµ[t]), (27)
www[t+ 1] = arg minL(zzz[t+ 1],www,λλλ[t],µµµ[t]), (28)

λλλk[t+ 1] = λλλk[t] + γ
(
yyyo,k[t+ 1]− yyyo[t+ 1]

)
,∀k, (29)

µµµk
i [t+ 1] = µµµk

i [t] + γ
(
xxxo,ki [t+ 1]− xxxoi [t+ 1]

)
,∀i, k. (30)

Based on the Lagrangian function in (26), we decompose
the problem in (25) into the following N + 1 optimization
problems. The first problem is associated with variables in the
normal operation mode only and corresponding to the primal
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variables update in (27)

min Co(yyyo) +

N∑
i=1

Ci(xxxoi )− (yyyo)T
N∑

k=1

λλλk

−
N∑

k=1

N∑
i=1

(µµµk
i )Txxxoi +

γ

2

N∑
k=1

‖yyyo,k − yyyo‖2

+
γ

2

N∑
k=1

N∑
i=1

‖xxxo,ki − xxxoi ‖2 (31)

s.t. (yyyo, {xxxoi }∀i) ∈ Fo.

By fixing the values of {xxxo,ki }∀i, yyyo,k,λλλ,µµµ, and then solving
the problem in (31), we obtain the optimal solution for
(yyyo, {xxxoi }∀i).

The remaining N problems are associated with variables in
the islanded operation cases and corresponding to the primal
variables update in (28). For each islanded operation case, we
decompose into the following problem

min τεkDk + (λλλk)Tyyyo,k +

N∑
i=1

(µµµk
i )Txxxo,ki

+
γ

2
‖yyyo,k − yyyo‖2 +

γ

2

N∑
i=1

‖xxxo,ki − xxxoi ‖2 (32)

s.t. (xxxk, yyyk, εk) ∈ Fk,

−∆max
o ≤ 111Tyyyk − 111Tyyyo,k ≤ ∆max

o ,

−∆max
i ≤ 111Txxxki − 111Txxxo,ki ≤ ∆max

i ,

variables: {xxxki }∀i, yyyk, εk, {xxx
o,k
i }∀i, yyy

o,k.

By fixing (yyyo, {xxxoi }∀i,λλλ,µµµ) and then solving the
problem in (32), we obtain the optimal solution for(
{xxxki }∀i, yyyk, {xxx

o,k
i }∀i, yyyo,k, εk

)
.

Algorithm Implementation: The whole procedure for solving
the problem in (25) using ADMM is described in Algorithm
1. First, a master computing node solves the optimization
problem in (31) to obtain the optimal solution (yyyo, {xxxoi }∀i).
Then it broadcasts the optimal solution in the normal operation
mode to all distributed computing nodes. Each distributed
computing node solves the optimization problem in (32) to
obtain the optimal solution

(
{xxxki }∀i, yyyk, {xxx

o,k
i }∀i, yyyo,k, εk

)
in

the islanded operation. Finally, based on the local values of(
yyyo,k, {xxxo,ki }∀i

)
, and (yyyo, {xxxoi }∀i), the dual variables can be

updated as in line 15 in Algorithm 1. Note that, N optimization
problems associated with the islanded operation cases are
decoupled and can be solved in a parallel fashion at different
computing nodes without affecting the others. This parallel
implementation reduces the computation time for the proposed
Algorithm 1.

The amount of information exchange between the master
node and distributed computing nodes is depicted in Fig.
2. The master node broadcasts the same solution in the
normal operation to all distributed nodes. Each distributed
node needs to send the local information

(
λλλ,µµµi, yyy

o,k,xxxo,ki

)
to

the master. Note that in the proposed algorithm, all microgrids
are required to exchange information with the master computer

Algorithm 1 ADMM Decomposition
1: Initialization: t = 0,λλλ = 0, {µµµi = 0}∀i
2: repeat
3: At master computer:
4: repeat
5: wait
6: until receive updates λλλ,µµµi, yyy

o,k,xxxo,ki from all dis-
tributed computers

7: solve (31) for optimal solution (yyyo[t+1], {xxxoi [t+1]}∀i)
8: broadcast (yyyo[t+ 1], {xxxoi [t+ 1]}∀i) to all distributed

computers
9: ——————————————–

10: At each distributed computer k
11: repeat
12: wait
13: until receive updates (yyyo[t + 1], {xxxoi [t + 1]}∀i) from

master computer
14: solve (32) for the optimal solution
{xxxki }∀i, yyyk, {xxx

o,k
i }∀i, yyyo,k, εk

15: update dual variables:

λλλk[t+ 1] = λλλk[t] + γ
(
yyyo,k[t+ 1]− yyyo[t+ 1]

)
µµµk
i [t+ 1] = µµµk

i [t] + γ
(
xxxo,ki [t+ 1]− xxxoi [t+ 1]

)
,∀i

16: send
(
λλλ,µµµi, yyy

o,k,xxxo,ki

)
to the master computer

17: ——————————————–
18: t← t+ 1
19: until a stopping criterion is met

… 
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Fig. 2. The illustration of information exchange between the normal operation
subproblem and islanded operation subproblems.

to solve subproblems. This can be performed via certain
entities that are designed to operate distribution networks
such as distribution system operators (DSOs). Besides the
responsibility of controlling and operating the distribution
grids, DSOs will play a role as information hubs to facilitate
for data exchange as well as data aggregation [20]–[23].

IV. SIMULATION RESULTS

In this section, we use computational experiments to eval-
uate the performance of our proposed algorithm. We use two
modified IEEE 9-bus and 14-bus power systems [24] to obtain
the physical connections as indicators for communication lines
between microgrids, in which each bus is considered as a
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TABLE I
DEMAND OF MICROGRIDS

Microgrid 1 2 3 4 5
Demand (MW) 108 97 180 74 71

Microgrid 6 7 8 9 10
Demand (MW) 136 125 171 175 195

Microgrid 11 12 13 14
Demand (MW) 265 194 317 100

microgrid. The operation voltage between the main grid and
microgrids, V0 = 50 kV, while the operation voltage between
microgrids is V1 = 22 kV [25]. The power loss constant
α = 0.02 [25]. The generation capacity of power generator
for each microgird is generated as 10% greater than its total
demand, and is able to adjust up to 10% of its maximum output
capacity when switching to the islanded operation mode. To
avoid the infeasibility of the problem, we set the maximum
allowable fraction amount of load curtailment, εkmax = 1
for all microgrids. We select τ = 10 in all simulations,
unless otherwise stated. The power demand of microgrids is
given in Table I. We assume the convex cost function for
main grid and microgrids as C(x) = ax2 + bx, where a
and b are generated randomly from a uniform distribution
a ∈ [0.01, 0.5]

(
$/MW 2

)
, b ∈ [10, 40] ($/MW ). All tests

are conducted on a Windows 7 64-bit personal computer with
Intel i7-4770 3.4 GHz CPU and 16GB of RAM using Matlab.
Each sub-problem in our proposed algorithm is solved using
CVX [26].

To demonstrate the advantage of the ADMM decomposition,
we show the number of iterations required for the proposed
algorithm to converge in Fig. 3. For the system with 9
microgrids, the relative error approaches to 10−4 in about 40
iterations, while 14 microgrids system needs 60 iterations to
yield the same relative error. This is due to the fact that a
larger system leads to a greater number of constraints in the
islanded mode, and consequently produces more sub-problems
when using ADMM decomposition. Further, notice that the
computational time required for each iteration is varied for
different systems. The average computational time for each
iteration in the system with 9 microgrids is 8.2 seconds, while
it is 41.3 seconds for the system with 14 microgrids.

It is an important task to find an approximate value for the
parameter τ in problem (9)-(19). In general, higher values of τ
increase the weight for `1-norm term in the objective function,
and the resultant optimal solution achieves smaller amount of
the load curtailment in the islanded operation. Particularly, Fig.
4 plots the average percentage of load curtailment as a function
of τ , and the result shows that we can significantly reduce the
amount of load shedding by setting a higher value for τ , which
can achieve about 1% of the total load of the system.

Even though a higher value of τ leads to a smaller amount
of load shedding, it may incur in general a higher generation
cost in normal operation. To investigate the impact of τ on
the operational cost of the system, we plot the generation cost
versus τ in Fig. 5. It shows that the system total generation
cost does not increase too much when we increase τ . Based on
the results from Fig. 4 and Fig. 5, we can select an appropriate
value of τ to satisfy the design criteria for power systems. This
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Fig. 3. The convergence performance of the proposed algorithm.
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Fig. 4. The effect of τ on the percentage of load curtailment when microgrids
switch into the islanded operation mode.

selection will obtain the trade-off between the generation cost
in the normal operation and the amount of load shedding in
the islanded mode.

To further study the effectiveness of our model in improving
the reliability of power systems, we report the generation cost
and the amount of load shedding as in Table II, with and
without `1-norm in the objective function. The column with
`1-norm denotes the results when we incorporate `1-norm into
the objective function. It shows that with `1-norm in the model
does not increase too much generation cost in the normal
operation while still obtains large reduction on the percentage
of load shedding compared to the model without `1-norm. This

TABLE II
TOTAL GENERATION COST AND LOAD CURTAILMENT COMPARISON

No `1-norm With `1-norm
Cost($) Cut(%) Cost($) Cut(%)

9 microgrids 33236 9.57 33291 1.26
14 microgrids 57000 6.3 57402 1.55
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Fig. 5. The effect of τ on the generation cost of the system in the normal
operation.
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Fig. 6. The fraction of load shedding of each individual microgird in the
islanded operation mode for the 9-microgrid system.

indicates that incorporating `1-norm in our model can improve
the power system reliability without significantly increasing
the generation cost in the normal operation. Moreover, our
model not only reduces the percentage of load shedding, but
also produces a sparse solution, which means that only several
microgrids have to reduce their loads. To demonstrate this,
Fig. 6 plots the fraction of load shedding for each individual
microgrid in the system with 9 microgrids. It can be noticed
that only microgrids 2, 3, 5, 6, 8, 9 will reduce their loads
when switching into the islanded operation.

V. HADOOP MAPREDUCE IMPLEMENTATION

In this section, we introduce an overview of MapReduce
programming model and describe the detailed implementation
of ADMM Algorithm 1 using Hadoop MapReduce framework.

A. MapReduce Programming Model

MapReduce is a programming model for distributed pro-
cessing of very large datasets using a large cluster of com-
modity machines [27]. It has been widely used to perform
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Fig. 7. The flow chart of MapReduce programming model.

special-purpose computations both in industry and academia
[28]. A MapReduce computation consists of a set of Map tasks
and Reduce tasks. The input data will be split into independent
blocks and processed by the Map tasks in a completely parallel
manner to produce a set of intermediate key-value pairs. Then,
all outputs of the mapping operation that share the same
intermediate key will be grouped together and passed to the
same Reducer. The MapReduce work flow is shown in Fig.
7. Generally, the Map and Reduce steps can be conceptually
expressed as [27]

map (k1, v1) −→ list(k2, v2)

reduce (k2, list(v2)) −→ list(v3).

Apache Hadoop is an open-source software framework writ-
ten in Java for easily writing application to process massive
amount of data on computer clusters in reliable, fault-tolerant
manner [29]. The core of Hadoop consists of a storage part,
which provides the Hadoop Distributed File System (HDFS)
architecture, and a processing part which implements the
MapReduce computation paradigm. The HDFS manages the
storage of data across an entire cluster of machines by splitting
files into blocks and distributing them amongst the nodes in
the cluster. Then, the data at each node is divided into fixed-
size piece called splits. Each split of data is processed in the
Map tasks based on the user-defined Map function to produce
a list of key-value pairs. The process of sorting key-value
pairs of map tasks and sending them to reducers is handling
internally by Hadoop. This allows Hadoop to reduce many
complexities such as data partitioning, scheduling tasks across
many machines, handling machine failures and performing
inter-machine communication [30].

B. ADMM Implementation using Hadoop MapReduce

Each iteration of ADMM Algorithm 1 can be represented
as a MapReduce job as illustrated in Fig. 8. The parallel
computations for islanded operation sub-problems in (32)
are performed by Map tasks, and the normal operation sub-
problem computation in (31) is performed by a Reduce task.
We have total N Mappers, one for each islanded operation
sub-problem. Each Mapper solves the optimization problem
in (32) to obtain yyyo,k, {xxxo,ki }∀i. However, solving the problem
in (32) for yyyo,k[t+1],xxxo,ki [t+1] on iteration t+1 needs to use
yyyo[t],xxxoi [t] and λλλk[t],µµµk[t] from the previous iteration. Since
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Fig. 8. Data sharing for iterative ADMM using Hadoop MapReduce and the detailed illustration of Map tasks and Reduce task in each MapReduce job in
each iteration.

MapReduce is not designed to support iterative applications,
we facilitate iterative computation for Algorithm 1 by writing
the output data at each iteration to the HDFS, which will
be used as the input data for Mappers in the next iteration.
Particularly, each Mapper uses splitID provided by Hadoop
to identify which islanded problem is and loads the corre-
sponding λλλk[t],µµµk[t] from HDFS in the previous iteration, the
yyyo[t],xxxoi [t] are the same for all Mappers.

After solving the optimization problem, each Mapper up-
dates values for λλλk and µµµk using (29) and (30), respectively.
Then each Mapper emits an intermediate key-value pair,
which is 〈1, {yyyo,k,xxxo,ki ,λλλk,µµµk}〉 to the Reducer. Since in our
problem, there is a single Reducer, which plays the role of
performing the normal operation computation, all the keys in
all Map tasks are selected as 1 to force all information from the
Mappers is sent to a unique Reducer. Based on all information
received from the Mappers, the Reducer solves (31) to obtain
yyyo, {xxxoi }∀i. The values of yyyo, {xxxoi }∀i,λλλ,µµµ are written out to
HDFS directly by the Reducer, which will be used as the input
data for MapReduce job in the next iteration. The detailed Map
tasks and Reduce task in each iteration is illustrated in Fig. 8.
The pseudo code for implementing Algorithm 1 using Hadoop
MapReduce is described in Algorithm 2.

C. Performance Results

We build a Hadoop cluster with 8 computers in which
each computer has a 2.33GHz Intel processor, 4GB of RAM.
Algorithm 2 is written in Java. Each Mapper and Reducer
solve optimization problem using Gurobi, which provides
interface to construct and solve optimization problem in Java
programming language [31]. We run Algorithm 2 on the
cluster with different total number of microgrids in the system
and report the running time as in Table III. We can see that the
running time for one iteration, which is determined as the time
for reading input data, processing Map and Reduce tasks, and
writing out data, on the cluster does not increase significantly

Algorithm 2 ADMM using Hadoop MapReduce
1: function MAP(islanded ID, inputData)
2: Load data of previous iteration from HDFS corre-

sponding to islanded ID
3: Solve islanded sub-problem (32)
4: Update λλλk,µµµk using (29) and (30)
5: EMIT 〈1, {yyyo,k,xxxo,ki ,λλλk,µµµk}〉
6: end function
7:
8: function REDUCE(key, Data from Mappers)
9: Concatenate {yyyo,k,xxxo,ki ,λλλk,µµµk}

10: Solve normal operation sub-problem (31) for yyyo,xxxo

11: EMIT 〈{yyyo,xxxo,λλλ,µµµ}〉
12: end function
13:
14: function MAIN(inputPath, outputPath)
15: Initialization
16: while ( notConverged and k < maxIterations ) do
17: run MapReduceJob (inputPath, outputPath)
18: t← t+ 1
19: end while
20: end function

when the number of microgrids increase. Specifically, the
time for Map and Reduce tasks, which solve subproblems,
is relatively small for three different systems. However, the
total time for convergence increases since systems with large
number of microgrids need more iterations to converge to the
optimal solution.

VI. CONCLUSIONS

In this paper, we propose a new model for the microgrid
generation schedule problem with the islanded operation con-
straints. The proposed problem produces an optimal generation
schedule with a minimal amount of load curtailment when
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TABLE III
RUNNING TIME ON THE CLUSTER

9 Microgrids 14 Microgrids 30 Microgrids
One iteration (sec.) 24 25 27.7

MAP (sec.) 10.7 12.2 14.1
REDUCE (sec.) 4.2 4.8 5.4
Total time (min.) 19 24 32

microgrids have to switch into the islanded operation. To
achieve this, we incorporate the `1-norm into the objective
function of the problem. We apply the ADMM-based decom-
position technique to decompose the large-scale centralized
optimization problem into multiple sub-problems in which
each sub-problem corresponds to the optimization problem
in each islanded case and can be solved simultaneously at
different computing nodes. Numerical results are conducted
to demonstrate the convergence performance of our proposed
algorithm. Moreover, the results also show that our model
reduces the generation cost in the normal operation and
achieves the minimal load curtailment when microgrids switch
to the islanded mode. Finally, we describe the detailed imple-
mentation of parallel computing for the proposed algorithm
using the Hadoop MapReduce software framework to run on
a computer cluster.
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